INDIAN MARITIME UNIVERSITY

(A Central University Government of India)
END SEMESTER EXAMINATIONS-June/July 2019
B.Tech (Marine Engineering)

Semester-I
Mathematics-I (UG11T3102)

Date: 11-07-2019
Duration: 3 hrs

Maximum Marks: 100
Pass Marks: 50
PART - A

Compulsory Questions: (The symbols have their usual meanings.)

1. (a) Find the nth derivative of $y=\frac{x}{(x-1)(2 x+3)}$.
(b) If $z=e^{a x+b y} f(a x-b y)$ prove that $b \frac{\partial z}{\partial x}+a \frac{\partial z}{\partial y}=2 a b z$.
(c) If $u=x^{2}-y^{2}, v=2 x y$ and $x=r \cos \theta, y=r \sin \theta$, find $\frac{\partial(u, v)}{\partial(r, \theta)}$.
(d) Find the radius of curvature at any point ($a t^{2}, 2 a t$) of the curve $y^{2}=4 a x$.
(e) Prove that $\Gamma(n+1)=n \Gamma(n)$.
(f) Evaluate the integral $\int_{0}^{1} \int_{0}^{y} x y e^{-x^{2}} d x d y$.
(g) Find the unit normal vector to the surface $x y^{2} z=3 x+z^{2}$ at the point ($-1,-1,2$).
(h) Using Cayley Hamilton theorem find the A^{-1} of matrix $A=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$.
(i) Show that shortest distance between two points in a plane is a straight line.
(j) Graphically find the maximum value of $Z=3 x_{1}+2 x_{2}$ subject to the constraints $3 x_{1}+x_{2} \leq 15, x_{1}+2 x_{2} \leq 10, x_{1}, x_{2} \geq 0$.

PART - B

$(14 \times 5=70)$

Answer any FIVE of the following questions

2 (a) If $\cos ^{-1}\left(\frac{y}{b}\right)=\log \left(\frac{x}{n}\right)^{n}$ then prove that

$$
\begin{equation*}
x^{2} y_{n+2}+(2 n+1) x y_{n+1}+2 n^{2} y_{n}=0 \tag{7}
\end{equation*}
$$

2(b) Find the asymptotes of the curve $y^{3}-2 x y^{2}-x^{2} y+2 x^{3}+3 y^{2}-7 x y+$ $2 x^{2}+2 y+2 x+1=0$.

3(a) If $u=\tan ^{-1} \frac{x^{3}+y^{3}}{x+y}$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$ and

$$
\begin{equation*}
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=2 \cos 3 u \sin u \tag{3+4}
\end{equation*}
$$

3(b) Examine the function $x^{3}+y^{3}-3 a x y$ for maxima and minima.

4(a) Evaluate the double integral $\iint(x+y) d y d x$ over the region bounded by $x=0, x=2 y=x$ and $y=x+2$.

4(b) Evaluate triple integral $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} x y z d z d y d x$.

5(a) A particle moves on the curve $x=2 t^{2}, y=t^{2}-4 t, z=3 t-5$ where t is the time. Find the component of the velocity and acceleration at $t=1$ in the direction $i-3 j+2 k$.
[7]
5(b) Show that the vector field $\vec{F}=\left(3 x^{2}+3 y z\right) \hat{\imath}+\left(3 y^{2}+3 x z\right) \hat{\jmath}+(3 x y) \hat{k}$ is irrotational. Find a scalar potential function \emptyset such that $\vec{F}=\nabla \varnothing$.

6(a) Discuss the consistency of the following system of equations and solve it if consistent.

$$
\begin{align*}
& x+2 y+z=2 \\
& 3 x+y-2 z=1 \\
& 4 x-3 y-z=3 \\
& 2 x+4 y+2 z=4 \tag{7}
\end{align*}
$$

6(b) Find the Eigen values and Eigen vectors of the matrix $\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right] \cdot[7]$
7(a) Let $F(z)=u(x, y)+i v(x, y)$ be an analytic function of z. If $u=x^{4}-$ $6 x^{2} y^{2}+y^{4}$ then find v and express $f(z)$ in terms of z.
[7]
7(b) Evaluate the integral $\int_{C} \frac{4-3 z}{z(z-1)(z-2)} d z$, where C is the circle $|z|=3$.
8(a) Find the curve on which functional $\int_{0}^{2}\left(x+y^{\prime}\right) y^{\prime} d x$ with $y(0)=0$ and $y(2)=1$ can be extremized.

8(b) Using simplex method solve the following LPP
Maximize $Z=5 x_{1}+3 x_{2}$ subject to $x_{1}+x_{2} \leq 2,5 x_{1}+2 x_{2} \leq 10,3 x_{1}+8 x_{2} \leq 12, x_{1}, x_{2} \geq 0$.

